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WEB APPENDIX 

 

Some analytic remarks on the relationship between the variance of the IV estimate and the 

size of the subset on which the exposure is measured 

An analytic formula relating the power of a Mendelian randomization analysis to 

parameter values representing sample size, subset sample size, strength of the genetic IV, causal 

effect of exposure on outcome, and degree and direction of confounding of the exposure-

outcome association is unlikely to be succinct whether in the complete-data, subsample or two-

sample situation. In this appendix, we investigate the variance of the Wald estimate in complete-

data, and then subsample and two-sample settings, giving analytic insight which could form the 

basis of an informed power calculation for an investigator designing a specific Mendelian 

randomization experiment. 

The Wald IV estimator ( ̂  ) is the ratio of the reduced form estimate (the coefficient in 

the regression of the outcome on the IV,  ̂  ) to the first-stage estimate (the coefficient in the 

regression of the exposure on the IV,  ̂  ). A further expression of the variance of the Wald 

estimator can be calculated using the delta method (1): 
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We use this expression here as it divides the variance into three convenient terms which can be 

discussed individually, it is asymptotically equivalent to the two-stage least squares variance in 

large samples, and its behavior should be similar to that of other variance estimates. The 

expression is rarely used in practice, as it requires knowledge of the covariance of the 

estimates  ̂   and  ̂  , which is related to the quantity which is being estimated, and as it makes 
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the assumption that the Wald estimator is approximately normally distributed, which is not true 

in small samples. In the absence of confounding, if the reduced form and first-stage estimates are 

taken on the same population, the correlation between these parameters is approximately equal to 

the observational correlation between the exposure and outcome.  

Without loss of generality, we scale the IV (G), exposure (X) and outcome (Y) so that 

each of them has unit variance. We initially assume that the association between X and Y is 

unconfounded, and that data are available on G, X, and Y in a sample of n individuals.  

We have: 
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where    
  is the coefficient of determination is the regression of X on G. We can approximate 

the variance of the Wald estimator as: 
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We have chosen not to simplify the expression further to maintain the three terms in the equation 

to comparative purposes. We note that the coefficient of determination    
  is typically of the 

order of 0.05-0.2 for most exposures used in Mendelian randomization. This means that the first 

term in this expression for the variance is typically 5 to 20 times the size of the other terms. If the 

X-Y association is thought to be partially driven by confounding, then the true correlation of the 
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estimates  ̂   and  ̂   is closer to the null than the observational correlation between X and Y, 

and the third term in the expression further attenuates. 

In a subsample analysis, we assume that data on G and Y are available on nY individuals 

and data on X are available on a subset nX (≤nY) individuals. The expression of the variance of the 

Wald estimator is: 
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As the estimates of  ̂   and  ̂   are no longer derived from the same population, the correlation 

between the parameters will reduce. Ignoring this term (which would be precisely zero in a two-

sample analysis), setting    
        and nX = nY, the first term is 10 times the magnitude of the 

second term. This means that decreasing the subset size nX to 10% of nY would only 

approximately double the variance of the Wald estimator. 

The relationship between the variance of an estimator and power is not linear, and a 

doubling of the variance may or may not have an appreciable impact on power. However, we 

have demonstrated, subject to several approximating and simplifying assumptions, that 

substantial reduction of the subsample on which the exposure is measured does not necessarily 

increase the variance of the IV estimator by the same proportion. 

 

Fieller’s theorem 

If the regression coefficients in the ratio method  ̂   and  ̂   are assumed to be normally 

distributed, critical values and confidence intervals for the estimator may be calculated using 



4 

 

Fieller’s theorem (2). For this, we need the correlation between  ̂   and  ̂  , which is generally 

assumed to be zero (3). If the standard errors are   ( ̂  ) and   ( ̂  ) and the sample size is N, 

then we define: 
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where   (     ) is the 97.5th percentile point for a t-distribution with N degrees of freedom. 

If D > 0 and f1 > 0, then the 95% confidence interval is the interval from 
    √ 

  
 to 

    √ 

  
. 

The confidence interval is more likely to be a closed interval like this if we have a “strong” 

instrument, that is an instrument which explains a large proportion of the variation of the 

exposure in the population. 

If D < 0, then there is no interval which covers the true parameter with 95% confidence. 

This occurs when there is little differentiation between both the exposure and outcome 

distributions in the genetic subgroups, and so an estimate corresponding to any size causal 

association is plausible.  

If D > 0 and f1 < 0, then the 95% confidence interval runs is the union of two intervals 

from minus infinity to 
    √ 

  
and then from 

    √ 

  
to plus infinity. All possible values are included 

in the interval except those between 
    √ 

  
and 

    √ 

  
. The interpretation is that the IV estimate is 

compatible with infinity, but not compatible with a finite association of a given magnitude.  

To summarize, Fieller’s theorem gives confidence intervals that have one of three possible 

forms: 
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i. The interval may be a closed interval      , 

ii. The interval may be the complement of a closed interval (           ), 

iii. The interval may be unbounded. 

where     
    √ 

  
, and     
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. 

 

 

Stata code for conducting subsample (or two-sample IV) analysis using seemingly 

unrelated regression (SUR) and the delta method 

 

/***** g is the instrument, x is the risk factor, y is the outcome *****/ 

/****participants with data on x are observations 1 through nX ****/ 

 

/*fit the reduced form regression model using all observations and store results*/  

regress y g  

est store GY 

/*fit the first-stage regression model using nX observations and store results*/  

regress x g in 1/nX  

est store GX  

/* combine results from different estimation commands and obtain MR/IV estimate*/ 

suest GY GX   

nlcom ([GY_mean]g)/([GX_mean]g) , post 
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Web Figure 1. Power (left) and median standard errors (right) for the two-sample IV estimate for different values of the causal effect 

size (βXY) and the sample size of the first-stage regression (nX), with a strong IV (R2 = 0.025), a sample size for the reduced form 

regression (nY) of 10,000, and a confounding variable with equal effects on X and Y (βUX = βUY = 0.2). βXY values are 0.0 (filled 

diamond), 0.05 (open diamond), 0.1 (filled triangle), 0.15 (open triangle), 0.2 (filled square), and 0.3 (open square). 
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Web Figure 2. Power (left) and median standard errors (right) for the two-sample IV estimate for different values of the first-stage 

R2 and the sample size of the first-stage regression (nX) with a constant causal effect size (βXY = 0.2), a sample size for the reduced 

form regression (nY) of 10,000, and a confounding variable with equal effects on X and Y (βUX = βUY = 0.2). First-stage R2 values are 

0.002 (filled diamond), 0.004 (open diamond), 0.007 (filled triangle), 0.01 (open triangle), 0.0015 (filled square), 0.2 (open square), 

0.03 (filled circle), 0.05 (open circle). 
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Web Figure 3. Bias in the two-sample IV estimate for confounded (left) and unconfounded (right) scenarios for different values of the 

average first-stage F statistic and the relative size of the sample used in the first-stage regression (nX:nY) with a constant causal effect 

size (βXY = 0.1). Values for nX:nY are 1 (filled diamond), 0.75 (open diamond), 0.5 (filled triangle), 0.25 (open triangle), and 0.1 (filled 

square). The sample size for the reduced form equation (nY, on the right vertical axis) is shown as dots connected with a dotted line. 
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Web Table 1. Power estimates from simulation 1 the delta method under the null hypothesis of no effect (βXY = 0.0) 

 
Subsample IV  Two-sample IV 

nX Median Beta Median SE Median F Power  nX Median Beta Median SE Median F Power 

30000 0.000 0.064 769.9 0.0476  30000 0.000 0.065 768.6 0.048 

20000 0.000 0.065 512.6 0.0512  20000 -0.001 0.065 512.4 0.053 

10000 0.000 0.065 256.3 0.0461  10000 0.001 0.065 256.4 0.045 

5000 0.000 0.065 128.3 0.0498  5000 0.000 0.065 128.3 0.044 

3500 0.001 0.065 89.8 0.0479  3500 -0.001 0.065 90.0 0.047 

2000 0.001 0.065 51.1 0.0397  2000 0.001 0.065 51.3 0.044 

1000 0.000 0.065 25.9 0.032  1000 0.000 0.066 25.6 0.033 

500 0.000 0.066 12.8 0.0193  500 0.000 0.067 12.7 0.017 

400 -0.001 0.067 10.3 0.0149  400 0.000 0.067 10.2 0.014 

300 -0.001 0.068 7.7 0.0096  300 -0.001 0.068 7.6 0.011 

200 -0.001 0.069 5.1 0.0039  200 0.001 0.069 5.1 0.004 

100 -0.001 0.073 2.5 0.0019  100 -0.001 0.073 2.5 0.002 

50 0.001 0.075 1.3 0.002  50 0.000 0.076 1.3 0.002 

25 0.001 0.070 0.8 0.001  25 -0.001 0.070 0.8 0.002 

Simulated data sets consist of 10,000 individuals with data on G and Y and nX individuals with data on G and X. A confounding variable U has 

effect of 0.2 on both X and Y. The first-stage R2 is 0.025.  
 

 


